当前位置: 笔下文学> 都市言情> 巅峰学霸> 第70章 这决赛难度主要是卡细节?(1/6)

第70章 这决赛难度主要是卡细节?(1/6)

    大概了解了规则后,乔喻便直接打开口浏览器,进入决赛地址,并登陆了自己的账号。

    竞赛不是高考,早一分钟,晚一分钟都无所谓。也占不了什么便宜,因为后台会自动计时,反正总共就只给了所有人八小时的做题时间。

    而且是连续八小时。

    也就是说只要计时一旦开始,就不能停下来了。

    中间不管是吃饭、喝水、上厕所,都算在答题时间里面。

    好在这对于一群年轻人来说并不是什么大不了的事情。

    不管是初中生还是高中生,他们不一定跑的很快,但大都能坐的很稳。

    很快乔喻便看到了决赛题目,第一题就让他很开心。

    说实话,如果是换做解答出薛松教授那道题之前的乔喻,碰到这种题大概还会头疼。

    倒不是这类题多难,主要是考了许多概念。而且所需要深刻理解的概念。比如子环的定义、对于矩阵环的理解、关于格的概念、模的同构分类以及有限生成性的理解等等这些…

    但现在的乔喻,真就是强到可怕。

    比如,根据给出的条件,乔喻立刻就判断出题目中给出的矩阵形状可以写成:

    显然这类矩阵构成一个具备特殊代数结构的子环,可以设定为r。

    再然后就简单了,其证明的核心无非就是判断有多少不同的r格。

    心里大概有了解题思路,乔喻也没急着动手开始答题,而是飞快的扫向,第二题,简单;第三题,也不难。直到第四题才稍微顿了顿。

    好家伙,这是求一个方程没有整数解的问题。(今天插图次数用完了,不能给大家放题了,感兴趣的可以去看彩蛋章。)

    说实话,对于其他人来说,乔喻觉得大概的确挺难的。但现在他发现只需要认真审题,这种证明题是真不难。无非就是引入单位根与多项式表达,然后进行方程化简,分析代数数论背景。

    甚至到了这一步,乔喻就已经能看出这个方程的根没有整数解了。

    因为在方程化简那一步,可以把方程左边看作是某个多项式的因子分解形式,且每个因子都与p次单位根的实部相关。这些因子对应的是chebyshev多项式或与单位根

上一章 章节目录 下一页