当前位置: 笔下文学> 都市言情> 巅峰学霸> 第37章 恐怖的执行力(3/3)

第37章 恐怖的执行力(3/3)

x + 3可用8维空间中的一个点表示。

    通过这种方法,数学家证明了孪生素数猜想在有限域中是正确的:相差任意间隔的孪生素多项式有无穷多对。

    这让乔喻大受震撼,原来数学可以这么玩的…

    没有工具解决某个问题的时候,就自己来造。

    这就好像玩游戏的时候,卡在某个关卡怎么都过不去了,玩家可以化身神器打造师,只要有足够的想象力,完全能打造一根只要碰到boss,就能直接扣9999滴血的棒子…

    当然,这根棒子的构造必须在大框架下是合理,这特么不比玩游戏要有意思的多?

    尤其是当乔喻查资料时,发现素数跟现代互联网主流近乎所有的加密系统,都息息相关的时候,更是引发了他极大的兴趣。

    比如使用最广泛的rsa加密算法。就是依赖于素数的乘积难以因式分解的数学性质。加密跟解密的核心则依赖于欧拉函数(n)=(p1)(q1)跟模幂运算。

    简单来说就是当随意选取两个大素数p跟q,且别人不知道p跟q的值时,很难从n中计算出(n)。

    除此之外,diffie-hellan密钥交换、椭圆曲线密码学也都跟素数息息相关。

    换言之,如果他能完全掌握素数的秘密,比如找到一种方法,能够快速对素数进行因式分解,那就意味着世界互联网主流的加密算法对他全部失效,这特么能赚多少钱,乔喻简直不敢想。

    尤其是金融领域的数字签名、认证,甚至区块链技术,都因为依赖于rsa/e签名跟其他一堆加密算法,而导致智能合约系统可以被篡改。

    真的,在看到这个钱途广大的未来之后,之前觉得很难的数学,突然就变得极有意思,于是昨晚他直接研究到了凌晨三点,还觉得精神抖擞。

    如果不是乔曦起夜,逼着他去睡觉,乔喻说不定真会就素数问题直接研究一通宵。

    果然,学好数学就是钱呐!

上一页 章节目录 下一章